Structure of the CAPM Covariance Matrix

James Bridgeman University of Connecticut

Actuarial Research Conference - University of California at Santa Barbara

July 14, 2014

INTENTIONS

- SEE HOW CAPM COVARIANCE MATRIX:
 - ACTUALLY HOLDS THE EXPECTED RETURNS
 - ACTIVELY REFLECTS THE MARKET WEIGHTS
- MOSTLY PEDAGOGY

A TINY BIT OF LIGHT ON LITERATURE

CAPM SET-UP

MARKET COVARIANCE MATRIX

$$oldsymbol{\Sigma} = egin{cases} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2n} \\ \dots & \dots & \dots & \dots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{nn} \end{pmatrix} ext{invertible, } \sigma_{ij} = \sigma_{ji}, \ \sigma_{ii} > 0, \ ext{and} \ \sigma_{ii}\sigma_{jj} > \sigma_{ij}^2 \end{cases}$$

MARKET WEIGHTS & EXPECTED RETURNS

$$\mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}$$
 market weights, $\mathbf{e} = \begin{pmatrix} 1 \\ 1 \\ \dots \\ 1 \end{pmatrix}$, $\mathbf{e}^T \cdot \mathbf{w} = 1$, $w_i > 0$,

$$\mathbf{r} = \begin{pmatrix} r_1 \\ r_2 \\ \dots \\ r_n \end{pmatrix}$$
 expected returns, r_f risk-free rate, $(\mathbf{r} - r_f \mathbf{e})$ market risk premia

CAPM CONCLUSIONS

ASSUMING MARKET IS EFFICIENT (I.E. IS A FRONTIER PORTFOLIO)

COVARIANCE-RETURNS-WEIGHTS RELATIONSHIP

$$\begin{aligned} & (\mathbf{r} - r_f \mathbf{e}) = \mathbf{\Sigma} \cdot \mathbf{w} \\ \mathbf{w} &= \frac{\mathbf{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \mathbf{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} \text{ (denominator ensures } \mathbf{e}^T \cdot \mathbf{w} = 1) \end{aligned}$$

RETURNS-BETAS RELATIONSHIP

$$(\mathbf{r} - r_f \mathbf{e}) = \beta \left(\mathbf{w}^T \cdot \mathbf{r} - r_f \right) = \beta \left(r_M - r_f \right)$$

where $\beta = \frac{\mathbf{\Sigma} \cdot \mathbf{w}}{\mathbf{w}^T \cdot \mathbf{\Sigma} \cdot \mathbf{w}}$
and $r_M = \mathbf{w}^T \cdot \mathbf{r}$ is the expected market return

THE LAZY PEDAGOGUE

- EXAM QUESTION
 - Be Sure To Emphasize Effect Of Negative Covariance

$$\Sigma = \begin{cases} .01 & .10 & -.20 \\ .10 & .04 & .25 \\ -.20 & .25 & .09 \end{cases}, \mathbf{r} = \begin{cases} .02 \\ .10 \\ .20 \end{cases}, r_f = .03, \text{ what is } \mathbf{w}?$$

- WAIT UNTIL GRADING TO WORK OUT THE ANSWER
- ANSWER

$$\Sigma^{-1} = \begin{cases} 4.5 & 4.5 & -2.5 \\ 4.5 & 3.0 & 1.7 \\ -2.5 & 1.7 & .73 \end{cases}, \mathbf{w} = \frac{\Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} = \begin{cases} -.27 \\ .80 \\ .47 \end{cases}, \text{Rats!}$$

- WHAT WENT WRONG?
 - AHA! Forgot Requirement $\sigma_{ii}\sigma_{jj}>\sigma_{ij}^2$. Easy To Fix Next Semester.

ENLIGHTENED PERHAPS, BUT STILL LAZY

- EXAM TIME THE FOLLOWING SEMESTER
 - Still Be Sure To Emphasize Effect Of Negative Covariance

$$\Sigma = \begin{cases} .010 & .015 & -.028 \\ .015 & .040 & .05 \\ -.028 & .05 & .090 \end{cases}, \mathbf{r} = \begin{cases} .02 \\ .10 \\ .20 \end{cases}, r_f = .03, \text{ what is } \mathbf{w}?$$

- STILL WAIT UNTIL GRADING TO WORK OUT THE ANSWER
- ANSWER

$$\Sigma^{-1} = \begin{cases} -13 & 33 & -23 \\ 33 & -1.4 & 11 \\ -23 & 11 & -2.1 \end{cases}, \ \mathbf{w} = \frac{\Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} = \begin{cases} -1.92 \\ 2.03 \\ .89 \end{cases}, \ \text{Worse!}$$

- WHAT WENT WRONG THIS TIME?
 - God Knows, Just Avoid The Negative Covariances Next Semester

JUST PLAIN STUBBORNLY LAZY

- THIRD SEMESTER'S A CHARM?
 - Let Everything Be Positive, Including All Of The Risk Premia

$$\Sigma = \begin{cases} .010 & .015 & .028 \\ .015 & .040 & .05 \\ .028 & .05 & .090 \end{cases}$$
, $\mathbf{r} = \begin{cases} .04 \\ .10 \\ .20 \end{cases}$, $r_f = .03$, what is \mathbf{w} ?

- CONFIDENTLY WAIT TO WORK OUT THE ANSWER
- ANSWER

$$\Sigma^{-1} = \begin{cases} 791 & 36 & -266 \\ 36 & 83.5 & -57.6 \\ -266 & -57.6 & 126 \end{cases}, \mathbf{w} = \frac{\Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \Sigma^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} = \begin{cases} 1.47 \\ .15 \\ -.62 \end{cases}, \text{No!}$$

- THERE'S MORE TO THIS THAN MEETS THE EYE!
- WHAT DOES Σ HAVE TO LOOK LIKE TO BE A MARKET?

A FAMILIAR PHENOMENON IN THE LITERATURE

- BEST & GRAUER (1985, 1992)
 - Efficient Markets with all $w_i > 0$ form a segment of the Frontier with length $\longrightarrow 0$ as number of assets $n \longrightarrow \infty$
- Brennan & Lo (2010)
 - For any given $(\mathbf{r} r_f \mathbf{e})$, Impossible Σ are those with some $w_i < 0$. Then $\mathbb{P}\left[\Sigma \text{ Impossible}\right] \nearrow$ geometrically with n for reasonable distribution assumptions on Σ .
- LEDOIT & WOLF (2004, 2013, 2014)
 - ullet Introduce statistical Shrinkage techniques to transform Empirical Σ into a Frontier Portfolio
- LEVY & ROLL (2010)
 - Empirical Σ has "high" $\mathbb P$ of being "close" to a Frontier Portfolio, with "close" attained by $\pm \epsilon$ on σ_{ii} and r_i . Note ρ_{ji} can remain fixed.
- BOYLE (2012, 2014)
 - On large class of Σ , Frontier Portfolio equivalent to Σ Almost Positive

IS THERE A SIMPLE-MINDED WAY TO SEE ALL THIS?

- GIVEN w and $\mathbf{r} r_f \mathbf{e}$ WITH ALL $w_i > 0$
- WHAT DO Σ THAT SIT ON FRONTIER LOOK LIKE?

$$\mathbf{w} = \frac{\boldsymbol{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \boldsymbol{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} \text{ so}$$

$$\boldsymbol{\Sigma} \cdot \mathbf{w} = \frac{(\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \boldsymbol{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})} \text{ and for any } k$$

$$(k\boldsymbol{\Sigma}) \cdot \mathbf{w} = \frac{k (\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot \boldsymbol{\Sigma}^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}$$

$$= \frac{(\mathbf{r} - r_f \mathbf{e})}{\mathbf{e}^T \cdot (k\boldsymbol{\Sigma})^{-1} \cdot (\mathbf{r} - r_f \mathbf{e})}$$

So it is enough to find all Σ such that

$$\mathbf{\Sigma} \cdot \mathbf{w} = (\mathbf{r} - r_f \mathbf{e})$$

and then multiply by any constant.

ロ ト 4回 ト 4 車 ト ・ 車 ・ り Q ©

IS THERE A SIMPLE-MINDED WAY TO SEE ALL THIS?

• EASY TO FIND A MATRIX **R** WITH $\mathbf{R} \cdot \mathbf{w} = \mathbf{r} - r_f \mathbf{e}$

Just let
$$\mathbf{R} = \left\{ (\mathbf{r} - r_f \mathbf{e}) \, \mathbf{e}^T \right\}$$

with n identical column vectors each equal to $(\mathbf{r} - r_f \mathbf{e})$. We can also express \mathbf{R} as n row vectors

$$\mathbf{R} = \begin{cases} (r_1 - r_f) \, \mathbf{e}^T \\ (r_2 - r_f) \, \mathbf{e}^T \\ \dots \\ (r_n - r_f) \, \mathbf{e}^T \end{cases}.$$

- UNFORTUNATELY THE CHOICE $\Sigma = R$ IS NOT INVERTIBLE
 - Rows and columns clearly fail to be independent
- COULD EASILY FAIL TO HAVE $\sigma_{ii} > 0$
- IS UNLIKELY TO HAVE $\sigma_{ij} = \sigma_{ji}$ OR $\sigma_{ii}\sigma_{jj} > \sigma_{ij}^2$ FOR ALL i, j

IS THERE A SIMPLE-MINDED WAY TO SEE ALL THIS?

• BUT MAYBE THERE IS A MATRIX A WITH A·w=0

So
$$(\mathbf{R} + \mathbf{A}) \cdot \mathbf{w} = \mathbf{R} \cdot \mathbf{w} = (\mathbf{r} - r_f \mathbf{e})$$

ullet AND WITH $oldsymbol{\Sigma}=(oldsymbol{R}+oldsymbol{A})$ INVERTIBLE AND SATISFYING

$$\sigma_{ij} = \sigma_{ji}$$
, $\sigma_{ii} > 0$, and $\sigma_{ii}\sigma_{jj} > \sigma_{ij}^2$

VIEW A AS ROW VECTORS

$$\mathbf{A} = egin{cases} \mathbf{a}_1^T \ \mathbf{a}_2^T \ \dots \ \mathbf{a}_n^T \end{pmatrix}$$
 , with each $\mathbf{a}_i^T = \{a_{i1} \mid a_{i2} \mid \dots \mid a_{in}\}$

• THE CONDITION FOR A·w=0 IS

$$\mathbf{a}_i^T \cdot \mathbf{w} = 0$$
 for all i

in other words, all n of the row vectors \mathbf{a}_i^T must be in the (n-1)-dimensional hyperplane through the origin perpendicular to the market weight vector \mathbf{w} .

THERE IS A SIMPLE-MINDED WAY TO UNDERSTAND!

- IF ALL Σ ARISE THIS WAY
- AND IF ALL OF THE OTHER CONDITIONS CAN BE MET
 - (PERHAPS TWO BIG IFs)
- THEN
 - The odds of an (n-1)-dimensional hyperplane through the origin being perpendicular to a vector ${\bf w}$ with all $w_i>0$ is $\left(\frac{1}{2}\right)^{n-1}$
 - Half the lines through the origin in 2-space are perpendicular to something in first quadrant.
 - A quarter of the planes through the origin in 3-space are perpendicular to someting in the first octant.
 - And so on ...
 - ullet The lazy pedagogue had at best 1 chance in 4 to write down a valid Σ
 - ullet even after he respected all of the σ constraints
 - It's immediately clear that the odds to randomly encounter a valid Σ disappear at least exponentially in n, independent of (reasonable) distribution assumptions

SIGMA CONDITIONS ON A EASY TO UNDERSTAND

• $\sigma_{ii} = \sigma_{ii}$ means that

$$(r_i - r_f) + a_{ij} = (r_j - r_f) + a_{ji}$$

so $a_{ij} = a_{ji} - (r_i - r_j)$

and \mathbf{A} can be expressed also as consisting of n column vectors

$$\mathbf{A} = \{\mathbf{c}_1 \ \mathbf{c}_2 \ \dots \ \mathbf{c}_n\}$$
 where $\mathbf{c}_j = \mathbf{a}_j - (\mathbf{r} - r_j \mathbf{e})$.

• $\sigma_{ii} > 0$ means that

$$(r_i - r_f) + a_{ii} > 0$$

so $a_{ii} > -(r_i - r_f)$.

 \bullet $\sigma_{ii}\sigma_{jj}>\sigma_{ij}^2$ means that

$$(a_{ii} + (r_i - r_f)) (a_{jj} + (r_j - r_f)) > (a_{ij} + (r_i - r_f))^2$$
so $a_{jj} > -(r_j - r_f) + \frac{(a_{ij} + (r_i - r_f))^2}{a_{ii} + (r_i - r_f)}$.

• Looks like an induction might be possible.

INVERTIBILITY CONDITIONS

$$\mathbf{\Sigma} = \mathbf{R} + \mathbf{A} = egin{cases} (r_1 - r_f) \, \mathbf{e}^T + \mathbf{a}_1^T \ (r_2 - r_f) \, \mathbf{e}^T + \mathbf{a}_2^T \ ... \ (r_n - r_f) \, \mathbf{e}^T + \mathbf{a}_n^T \end{cases}$$

IS INVERTIBLE IFF ITS n ROW VECTORS ARE INDEPENDENT

- INDEPENDENCE HOLDS IF AND ONLY IF
 - **1** The n row vectors \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_n^T span the (n-1)-dimensional hyperplane perpendicular to the market weight vector \mathbf{w} , and
 - ② $\mathbf{w}^T \cdot (\mathbf{r} r_f \mathbf{e}) \neq 0$, i.e. the market risk premium vector $(\mathbf{r} r_f \mathbf{e})$ is not perpendicular to the market weight vector \mathbf{w} .
- PROOF
 - ① $(r_1 r_f) \mathbf{e}^T$, ..., $(r_n r_f) \mathbf{e}^T$ are collinear so the row vectors of $\mathbf{R} + \mathbf{A}$ cannot span an n-space unless \mathbf{a}_1^T , ..., \mathbf{a}_n^T span an (n-1)-space, and the (n-1)-dimensional hyperplane perpendicular to the market weight vector \mathbf{w} is the (n-1)-space they are in.

INVERTIBILITY CONDITIONS

- PROOF (continued)
 - (prior slide)
 - **2** Requires a slightly fussy proof that essentially follows from the fact that \mathbf{e}^T and \mathbf{w} both have all components positive and \mathbf{a}_1^T , ..., \mathbf{a}_n^T are all perpendicular to \mathbf{w} .
- CONDITION 2 HOLDS IN ANY REASONABLE MODEL

$$\mathbf{w}^T \cdot (\mathbf{r} - r_f \mathbf{e}) = (\mathbf{w}^T \cdot \mathbf{r} - r_f) = (r_M - r_f) > 0$$

where $r_M = \mathbf{w}^T \cdot \mathbf{r}$ is the expected return on the risky market.

- SO $\Sigma = R + A$ is invertible in a reasonable model if and only if
 - ① The n row vectors \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_n^T span the (n-1)-dimensional hyperplane perpendicular to the market weight vector \mathbf{w}

- WORK BACKWARDS TO CHOOSE \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_n^T
 - Suppose you already have chosen \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_{n-1}^T .
 - Then there is no choice about what \mathbf{a}_n^T must be. By symmetry:

$$a_{n \ 1} = a_{1 \ n} - (r_n - r_1)$$
 $a_{n \ 2} = a_{2 \ n} - (r_n - r_2)$
...
 $a_{n \ n-1} = a_{n-1 \ n} - (r_n - r_{n-1})$.

Since $\mathbf{a}_n^T \cdot \mathbf{w} = 0$ the choice for $a_{n,n}$ also is fixed. The requirement is

$$w_1 a_{n \ 1} + \dots + w_{n-1} a_{n \ n-1} + w_n a_{n \ n} = 0$$

so $a_{n \ n} = -\frac{1}{w_n} \left(w_1 a_{n \ 1} + \dots + w_{n-1} a_{n \ n-1} \right)$,

which finishes the complete determination of \mathbf{a}_n^T .

- WORK BACKWARDS TO CHOOSE \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_n^T
 - But $a_{n,n}$ has to satisfy some σ conditions:

$$a_{nn} > -(r_n - r_f)$$
 and for all $i < n$
 $a_{nn} > -(r_n - r_f) + \frac{(a_{in} + (r_i - r_f))^2}{a_{ii} + (r_i - r_f)}$

• That means the choice of \mathbf{a}_{n-1}^T couldn't have been completely free

$$\begin{split} -\frac{1}{w_n} \left(w_1 a_{n \; 1} + \; \ldots \; + w_{n-1} a_{n \; n-1} \right) > - \left(r_n - r_f \right) \; \text{and for all} \; i < n \\ -\frac{1}{w_n} \left(w_1 a_{n \; 1} + \; \ldots \; + w_{n-1} a_{n \; n-1} \right) > - \left(r_n - r_f \right) + \frac{\left(a_{in} + (r_i - r_f) \right)^2}{a_{ii} + (r_i - r_f)} \\ \text{where } a_{n \; 1} \; = \; a_{1 \; n} - \left(r_n - r_1 \right) \end{split}$$

$$a_{n n-1} = a_{n-1 n} - (r_n - r_{n-1}).$$

• Since all $w_i > 0$, just pick a small enough a_{n-1} n (negative if need be)

- WORK BACKWARDS TO CHOOSE \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_n^T
 - One possible problem at i = n 1:

$$-\frac{1}{w_n} \left(w_1 a_{n+1} + \dots + w_{n-1} \left(a_{n-1} \right)_n - \left(r_n - r_{n-1} \right) \right) >$$

$$> - \left(r_n - r_f \right) + \frac{\left(a_{n-1} \right)_n + \left(r_{n-1} - r_f \right)^2}{a_{n-1} + \left(r_{n-1} - r_f \right)}$$

so a_{n-1} n on both sides, and squared (so made positive) on the right. Does picking a_{n-1} n small enough (negative if need be) still work?

• YES! \mathbf{a}_{n-1}^T is perpendicular to \mathbf{w} with all $w_j > 0$ so picking a small enough a_{n-1} n (negative if need be) forces a_{n-1} n-1 to increase and it turns out (some delicate analysis) to be enough to make the inequality work.

$$\left\{ \begin{array}{ccc} \dots & \dots & \dots \\ \dots & \uparrow & \downarrow \\ \dots & \downarrow & \uparrow \end{array} \right\}$$

THE HARD PART IS DONE

• Given \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_{n-2}^T we saw that we can choose \mathbf{a}_{n-1}^T , \mathbf{a}_n^T that satisfy the σ conditions.

• GO BY INDUCTION STARTING AT \mathbf{a}_1^T

• For $1 \leq i \leq n-2$, given \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_{i-1}^T always free to choose a_{ii} big enough to satisfy the σ conditions, then a_{i} $_{i+1}$, ..., a_{i} $_n$ any values that keep $\mathbf{a}_i^T \cdot \mathbf{w} = 0$

• SOME SPAN RESTRICTIONS ON CHOICES OF \mathbf{a}_i^T

- To ensure that \mathbf{a}_1^T , \mathbf{a}_2^T , ..., \mathbf{a}_i^T spans at least an (i-1)-dimensional subspace of the (n-1)-dimensional hyperplane perpendicular to \mathbf{w} we have to disallow some choices in the induction.
- The whole set of disallowed matrices **A** altogether has dimension $\leq \frac{n(n-1)}{2} 3$.
- The whole set of allowed matrices **A** has dimension $\frac{n(n-1)}{2}$, still for a fixed choice of **w** and $(\mathbf{r} r_f \mathbf{e})$ and still requiring

$$\mathbf{\Sigma} \cdot \mathbf{w} = (\mathbf{r} - r_f \mathbf{e})$$

BACK TO THE LAZY PEDAGOGUE

A FEW MORE DEGREES OF FREEDOM

- We can multiply any $\Sigma = \mathbf{R} + \mathbf{A}$ developed above by any constant k.
- We can choose w_1, \ldots, w_n subject to $\mathbf{e}^T \cdot \mathbf{w} = 1$ and $w_i > 0$
- So altogether the space of possible solutions Σ has dimension $\frac{n(n-1)}{2}+1+n-1=\frac{(n+1)n}{2}$, now with a possible disallowed set of dimension $\leq \frac{(n+1)n}{2}-3$.

• $A \cdot w = 0$ IS THE MAIN NON-OBVIOUS RESTRICTION

- ullet The σ restrictions are all visible in $oldsymbol{\Sigma}$ and true for any empirical $oldsymbol{\Sigma}$
- Invertibility of Σ is apparent or easy to check, at least for small n.
- The space of possible $n \times n$ symmetric matrices has dimension $n + (n-1) + ... + 1 = \frac{(n+1)n}{2}$, same as the space of solutions
- The disallowed set of matrices has measure (probability) 0.
- But the odds of an (n-1)-dimensional hyperplane through the origin being perpendicular to a vector ${\bf w}$ with all $w_i>0$ is $\left(\frac{1}{2}\right)^{n-1}$
- \bullet So solutions seemingly are rare only because of that factor $\left(\frac{1}{2}\right)^{n-1}$

ONE MORE SOURCE OF MEANINGFUL CONSTRAINT

REMEMBER THAT RETURNS ARE CONSTRAINED

In meaningful models

$$\mathbf{w}^T \cdot (\mathbf{r} - r_f \mathbf{e}) = (\mathbf{w}^T \cdot \mathbf{r} - r_f) = (r_M - r_f) > 0$$

- If there are any risky assets with expected return $r_i < r_f$ then this inequality cuts off a fraction (call it f) of the otherwise possible \mathbf{w} .
- Now the only possible **w** are in the intersection of the set having all $w_i > 0$ with the half-space having $\mathbf{w}^T \cdot (\mathbf{r} r_f \mathbf{e}) > 0$.
- This in turn eliminates the same fraction f of the set of otherwise possible matrices ${\bf A}$, whose row vectors have to live on the plane perpendicular to ${\bf w}$, so possible ${\bf \Sigma}$ are now rare by a factor $f\left(\frac{1}{2}\right)^{n-1}$.
- This further militates against the lazy pedagogue's chance of success, since he likes to illustrate negative covariances and negative risk premia.
- It impairs by the same factor the probability of a random empirical Σ to satisfy CAPM, even if it satisfies all the σ constraints and invertibility.
- If I have understood Phelim Boyle's work, the "almost positive" condition does not yet contemplate this possibility. How should it be modified/generalized to this case?

ALMOST FORGOT - What Is That Matrix A Anyway?

Claim:
$$\mathbf{A} = \mathbf{Cov}\left(\mathbf{\bar{r}}, \left(\mathbf{\bar{r}}^T - \bar{r}_M \mathbf{e}^T\right)\right)$$
 where bar means random,

 \bar{r} is the random vector of actual asset returns in the market and \bar{r}_M is the random actual return on the market as a whole, i.e.

$$\bar{r}_M = \bar{\mathbf{r}}^T \cdot \mathbf{w}$$

Proof: $Cov(\bar{r},\bar{r}^T) = \Sigma$ by definition.

$$\begin{aligned} \mathbf{Cov}\left(\bar{\mathbf{r}},\bar{r}_{\mathsf{M}}\mathbf{e}^{T}\right) &= \left\{\mathbf{Cov}\left(\bar{\mathbf{r}},\bar{r}_{M}\right)\mathbf{e}^{T}\right\}, \text{ with } n \text{ identical columns} \\ &= \left\{\mathbf{Cov}\left(\bar{\mathbf{r}},\left(\bar{\mathbf{r}}^{T}\cdot\mathbf{w}\right)\right)\mathbf{e}^{T}\right\} \\ &= \left\{\left(\mathbf{Cov}\left(\bar{\mathbf{r}},\bar{\mathbf{r}}^{T}\right)\cdot\mathbf{w}\right)\mathbf{e}^{T}\right\} \\ &= \left\{\left(\boldsymbol{\Sigma}\cdot\mathbf{w}\right)\mathbf{e}^{T}\right\} = \left\{\left(\mathbf{r}-r_{f}\mathbf{e}\right)\mathbf{e}^{T}\right\} = \mathbf{R} \text{ so} \end{aligned}$$

 $\mathsf{Cov}\left(\bar{\mathbf{r}},\left(\bar{\mathbf{r}}^T-\bar{r}_M\mathbf{e}^T\right)\right) = \mathbf{\Sigma}-\mathsf{R} = \mathsf{A}$

THANKS

PHELIM BOYLE

MY STUDENTS THIS SUMMER